Pharmacovigilance, Students Rosa Jones Pharmacovigilance, Students Rosa Jones

Pharmacovigilance: A Complete Guide to Pharmacovigilance and Drug Safety Training

What Is Pharmacovigilance? - Definition, Jobs, Salary, And Pharmacovigilance Certification

Pharmacovigilance

A Guide All About Pharmacovigilance


To increase your chances of getting hired or promoted, scroll below or enroll in our CCRPS Advanced Pharmacovigilance and Argus Safety Certification (APVASC)TM Course which covers drug safety and pharmacovigilance training

What is pharmacovigilance?

Pharmacovigilance Is The Study Of Two Primary Outcomes In The Pharmaceutical Industry:

Safety And Efficacy.

Essentially, it asks does a drug work and is it safe?

Pharmacovigilance is the process of monitoring the effects of drugs, both new and existing ones. This includes collecting data, analyzing it, and taking steps to prevent any negative effects. Pharmacovigilance must happen throughout the entire life cycle of a drug, from when it is first being developed to long after it has been released on the market.

What is the Aim Of Pharmacovigilance?

Pharmacovigilance is required through the entire life cycle of a drug – starting at the preclinical development stage and going right through to continued monitoring of drugs once they hit the market.

Pharmacovigilance includes collecting, analyzing, monitoring, and preventing adverse effects in new drugs and therapies.

It can be broken down into three main sub-specialisms:

  1. Surveillance: Surveillance is geared towards risk management and signal detection. Roles in this specialism focus analysis of drug safety information gathered from other professionals. Surveillance is responsible for creating development safety update reports (DSURs) for drugs in clinical research and periodic benefit-risk evaluation reports (PBRER) for drugs that are on the market.

  2. Operations: Operations focus on collecting and recording information during preclinical development, early clinical trials, and gathering real-world evidence (RWE) of adverse events reported by medical professionals and patients. Operations may also create standard operating procedures (SOPs), individual case study reports, and regulatory reports.

  3. Systems: Systems is concerned with the development of robust systems to store and manage data relating to pharmacovigilance. It involves keeping abreast of changing regulations and guidance in the pharmacovigilance industry and ensuring compliance at all levels of an organization.

The Qualified Person for Pharmacovigilance (QPPV) is responsible for ensuring that an organization's pharmacovigilance system meets all applicable requirements.

What is Pharmacovigilance Training?

If you’re looking to boost your career prospects in the pharmaceutical industry, drug safety training is a great string to add to your bow. Whether you want to move into clinical research or enhance your profile in your existing company, certification is crucial.

If you run a company and want to provide your staff with drug safety training to increase their knowledge and provide a safer working environment, our course is for you too.

We even help train Senior PVs from Fortune 500 companies to improve their efficiency and compliance.

No experience? No worries!

Our triple-accredited Advanced Pharmacovigilance and Argus Safety Certification (APVASC)TM is designed to teach you all you need to know in just 1 week!

Recognized Drug Safety Training I 180 Hours I On-Demand I Accredited I 25+ Modules I Training Compliance I Instant Enrolment I 1+Wk Certification I

What do Pharmacovigilance Officers do?

The exact nature of each role varies, but in essence, Pharmacovigilance Officers (PVs) collect adverse event data on drugs (Phase 4) to analyse and create usage warnings for the drug.

Some roles insist on physicians, nurses, or those with a Master of Science degree. A Master’s in pharmacovigilance is your best route into the industry – but that takes up to 2 years and is very expensive.

Your quicker route into the industry is with a drug safety accreditation.

Please note: A minimum of an associate degree is required to take any training course, including ours.

How To Get Into Pharmacovigilance

The CCRPS pharmacovigilance certification to provide advanced training for entry level pharmacovigilance to ensure you are fully prepared for a career in drug safety monitoring. We are a non-profit organization dedicated to providing advanced pharmacovigilance training to students at all stages of their careers.

The courses provide you with theory and practical-based learning in pharmacovigilance and give you vital industry experience.

Our pharmacovigilance training courses meet
WHO-ISoP and FDA guidelines and are accredited by the ACCRE and other recognized accreditation boards.

You’ll learn the basics of pharmacovigilance, why it’s necessary, its history, and how to find career opportunities within the industry.

You’ll look at different methodologies, pharmacovigilance regulation, pharmacovigilance audit and risk management, and vaccine pharmacovigilance.

You’ll also discover where to find further information to enhance your pharmacovigilance knowledge and study individual case reports to get to grips with the finer details of the subject.

At the end of the course, you will receive your certification. Then you’re ready to set out on your pharmacovigilance career.

After achieving your certification, you’ll open up a world of opportunities in pharmacovigilance and be qualified for entry-level roles including, but not limited to the following Drug Safety Jobs:

Pharmacovigilance Jobs

Pharmacovigilance Jobs Entry Level

Remote Pharmacovigilance Jobs

18,000 Pharmacovigilance Jobs (always include a SPECIFIC cover letter for all jobs and follow up at least twice by email if you do not hear back to show interest to every single job).

  • Drug safety or Pharmacovigilance scientist (specialist or associate)

  • Drug safety or PV manager

  • Safety or PV reviewer

  • Pharmacovigilance Quality Compliance

  • Clinical Quality specialist

  • Medical Safety scientist/specialist/reviewer

  • Local safety officer

  • Clinical trial project safety associate (reviewer or specialist)

  • MedDRA coder

  • Pharmacovigilance safety and analytics reporting analyst/specialist/associate

  • Pharmacovigilance Auditor or PV Inspection readiness officer

    • Safety or Pharmacovigilance Physician (medical director, MD/MBBS, IMG)

    • Safety Compliance Writer

    • Good PV Practices manager

    • GCP specialist

    • Pharmacovigilance vendor

    • Case processing specialist

    • Clinical trial case processing safety specialist

    • Post-marketing case processing safety specialist

    • Epidemiology safety associate (MPH) • Risk management manager
    • Signal management specialist
    • Periodic reporting specialist

    • Regulatory affairs safety specialist

    You’ll also be qualified to act as an onsite safety representative for the duration of a given contract.

Pharmacovigilance Salary

The pandemic has demonstrated just how vital the pharmaceutical industry is to the smooth running of the country and the economy. And with the average entry-level salary in pharmacovigilance in the region of $69,000, it provides a unique opportunity to do your duty and be well-rewarded.

Once you are experienced in
pharmacovigilance, you can expect to command a salary of around $114,000.

And after 3-10 years in the industry, you can expect to earn $136,000. Based on salary, the US is the best country for pharmacovigilance jobs although pharmacovigilance is paid well globally as well.

We have trained over 1,800 clinical research and pharmacovigilance professionals and cover global clinical safety and pharmacovigilance as well as argus safety data base certification in our online, on-demand course. Our drug safety training is provided online and can be completed in less than a week. This is a great alternative to a diploma course in pharmacovigilance as you can finish quickly and still get an advanced level of understanding under your belt.

You can speak with our enrollment advisors for assistance in pricing and scholarship. Completed certification helps demonstrate your interest and knowledge to employers.

A career in pharmacovigilance is rewarding both personally and financially.

But like all new career paths, it can be difficult to gain experience or demonstrate your commitment from the outside. Achieving an accredited PV certification shows potential employers that you are serious about a career in the industry. It proves that you have the required knowledge and understanding of pharmacovigilance to add value to their organization.

For further details, call and speak to one of our 24/7 enrollment representatives through the orange chat box.

Good pharmacovigilance practice - ICH GCP guidelines for pharmacovigilance

Pharmacovigilance certification

Online Pharmacovigilance Training Course

Pharmacovigilance Certification

by CCRPS pharmacovigilance training institute is a globally-accepted, accredited Online Pharmacovigilance Training Course

Fundamentals Of Global Pharmacovigilance

Introduction to Drug Safety and PV FREE PREVIEW

Key PV Terminology (Side Effect, Drug Safety, and Risk Terms) FREE PREVIEW

International Regulatory Requirements and Guidelines Overview FREE PREVIEW

Pharmacovigilance Quiz

Regional Regulatory Requirements (FDA, EMA, Japan, China) FREE PREVIEW

Postmarketing Surveillance (PMS) and Safety Management FREE PREVIEW

GVP - Pharmacovigilance Abbreviations Advanced Review of Adverse Event Reporting

Advanced Review Of Pharmacovigilance

Advanced Practice of Pharmacovigilance Pharmacovigilance Quiz

Additional Encompassing and Confusing Terms in Pharmacovigilance

MedDRA (Hierarchy, Searching, Terms, Exporting, Assessing, Important Medical Events)

Pharmacovigilance Quiz
Need for Pharmacovigilance
The History of Pharmacovigilance FREE PREVIEW Roles in Pharmacovigilance Pharmacovigilance Quiz
Key Stakeholders in Pharmacovigilance Pharmacovigilance Quiz

Post-marketing AE Processing and Reporting(ICSR, Case Processing, Narrative Writing, & International Aggregate Reporting)

Pharmacovigilance Quiz

Signal Detection (Detection, Validation, Prioritization, and Action)

Pharmacovigilance Quiz
Risk Assessment, Plan, and Management Pharmacovigilance Quiz

Vaccine Surveillance - COVID-19 Updated (AEFI, Vaccinology, AESI, AVSS, Communication, and Case Studies)

Post-authorization/Post-marketing Regulations in Pharmacovigilance

Argus Safety Database Certification

Argus Safety Database Certification Part 1 (Into and Video Demos)

Argus Safety Database Certification Part 2 Argus Safety Database Certification Part 3 Argus Safety Database Certification Part 4 Argus Safety Database Certification Part 5 Argus Safety Database Certification Part 6 Oracle Argus Safety User Guide

Resources

International Pharmacovigilance Initiatives and Guidelines - EMA

DIA Safety and Pharmacovigilance Competencies

Pharmacovigilance Career Resources

WHO-ISoP Pharmacovigilance Resources

E2E-Pharmacovigilance Planning

GVP XVI Addendum: Educational Materials

GVP Module I-IV PV Systems, PSMF, Inspections & Audits

GVP I: Pharmacovigilance Systems

GVP VIII: Post-authorisation Safety Studies

GVP III: Pharmacovigilance Inspections

GVP IX Addendum: Methodological aspects

GVP V: Risk management systems

GVP IX: Signal management-

GVP VIII Addendum: Requirements- recommendations_en-1

GVP XV: Safety Communication

GVP XVI: Risk-minimization measures

GVP II: Pharmacovigilance System Master File

GVP VI: Duplicate Management

GVI VI: Pharmacovigilance Audits

GVP X: Additional Monitoring

GVP VII: Periodic Safety Update Report

GVP VI: Collection, management, and submission of reports


Pharmacovigilance Definition

Investigational product (IP): Any drug, device, therapy, or intervention after Phase I trial

Event: Any undesirable outcome (i.e. undesired laboratory finding, symptom, or disease)

Adverse event/experience (AE): Any related OR unrelated event occurring during use of IP

Adverse drug reaction/effect (ADR/ADE): AE that is related to product

Serious Adverse Event (SAE): AE that causes death, disability, incapacity, is life- threatening, requires/prolongs hospitalization, or leads to birth defect

Unexpected Adverse Event (UAE): AE that is not previously listed on product information

Unexpected Adverse Reaction: ADR that is not previously listed on product information

Suspected Unexpected Serious Adverse Reaction (SUSAR): Serious + Unexpected + ADR

Causality assessment: Review of drug (i.e. pharmacology, pathophysiology, time overlap of event and IP administration, dechallenge and rechallenge, confounding patient-specific disease manifestations or other medications, and other explanations) to determine if certain, probable/likely, possible, unlikely, conditional/unclassified, unassessable/unclassifiable.

Dechallenge vs. Rechallenge: Causality assessed by measuring AE outcomes when withdrawing vs. re-administering IP

Causal relationship: Determined to be certain, probable/likely, or possible (AE + Causal -> ADR)

Seriousness: based on outcome + guide to reporting obligations (i.e. death SAE -> report in 3 days) mnemonic: seriOOusness = OutcOme

• Severity: based on intensity (mild, moderate, severe) regardless of medical outcome (i.e. severe headache -> not serious) mnemonic: severiTTy = InTensiTy

• Temporal relationship: Positive if AE timing within use or half-life of drug (positive, suggestive, compatible, weak, negative)

• Signal: Event information after drug approved providing new adverse or beneficial knowledge about IP that justifies further studying (PMS = signal detection, validation, confirmation, analysis, & assessment and recommendation for action)

• Identified risk: Event noticed in signal evaluation known to be related/listed on product information

• Potential risk: Event noticed in signal evaluation scientifically related to product but not listed on product information

• Important risk/Safety concern: Identified or potential risk that can impact risk-benefit ratio

• Risk-benefit ratio: Ratio of IP’s positive therapeutic effect to risks of safety/efficacy

• Summary of product characteristics (SmPC/SPC): guide for doctors to use IP

Good Pharmacovigilance Practice - ICH GCP guidelines for pharmacovigilance

Global Pharmacovigilance laws and regulations - IAOCR Directory

Local Pharmacovigilance Regulatory Bodies

  • Australia – Therapeutic Goods Administration (TGA)

    • New Zealand – MEDSAFE

    • North America

    • Canada – Health Canada ~2%

    • USA* – FDA: Food and Drug Administration ~33%

    • Central/South America

    • Argentina – ANMAT

    • Brazil – Agencia Nacional de Vigilancia Sanitaria (ANVISA)

    • Chile – Instituto de Salud Publico (ISP)

    • Columbia – Instituto Nacional de Vigilancia Medicamentos y Alimentos (INVIMA)

    • Costa Rica – Ministerio de Salud

    • Cuba – CECMED

    • Dominican Republic – Dirección General de Drogas y Farmacias

    • Jamaica – Ministry of Health

    • Mexico – Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS)

    • Paraguay – Ministro de Salud Pública y Bienestar Social

    • Peru – Ministerio de Salud

    • Uruguay – Ministerio de Salud Publica

    • European Union* – EMA: European Medicines Agency ~17%

    • Armenia – Scientific Centre of Drug and Medical Technology Expertise

    • Austria – Agency for Health and Food Safety (AGES)

    • Belgium – Federal Agency for Medicines and Health Products

    • Bulgaria – Bulgarian Drug Agency

    • Croatia – Agency for Medicinal Products and Medical Devices of Croatia

    • Cyprus – Ministry of Health

    • Czech Republic – State Institute for Drug Control

    • Denmark – Danish Medicines Agency

    • Estonia – State Agency of Medicines

    • Finland – Finish Medicines Agency

    • France – Agence Nationale de Sécurité du Medicament et des Produits de Santé

    • Germany – Federal Institute for Drugs and Medical Devices

    • Georgia – Regulation Agency for Medical and Pharmaceutical Activities

    • Greece – National Organisation for Medicines

    • Hungary – National Institute of Pharmacy

    • Iceland – Icelandic Medicines Agency

    • Ireland – Irish Medicines Board

    • Italy – National Institute of Health

    • Lithuania – State Medicines Control Agency

    • Luxembourg – Ministry of Health

    • Malta – Maltese Medicines Authority

      Moldova – Medicines Agency

    • Netherlands – Medicines Evaluation Board

    • Norway – Norwegian Medicines Agency

    • Poland – The Office for Registration of Medicinal Products, Medical Devices and Biocidal Products

    • Portugal – National Authority of Medicines and Health Products

    • Romania – National Medicines Agency

    • Russia – Ministry of Health of the Russian Federation• Serbia – Medicines and Medical Devices Agency of Serbia

      • Slovakia – State Institute for Drug Control • Slovenia – Ministry of Health
      • Spain – Spanish Medicines Agency
      • Sweden – Medical Products Agency

      • Switzerland – Swiss Agency for Therapeutic Products

      • Ukraine – Ministry of Health

      • United Kingdom – Medicines and Healthcare Regulatory Agency (MHRA)

      • Bahrain – I-SEHA

      • Egypt – Ministry of Health

      • Iran – Ministry of Health

      • Israel – Ministry of Health

      • Jordan – Jordan Food and Drug Administration

      • Lebanon – Ministry of Public Health

      • Saudi Arabia – Saudi Food and Drug Authority

      • United Arab Emirates – Ministry of Health

      • Bangladesh – Directorate General of Drug Administration (DGDA)

      • Bhutan – Drug Regulatory Authority

      • China* – CFDA/NMPA: State Food and Drug Administration

      • India – Central Drug Standards Control Organization (CDSCO)

      • Indonesia – POM (Pengawas Obat dan Makanan)

      • JAPAN* – PMDA: Ministry of Health, Labour and Welfare ~12%

      • Korea (South) – Korean Food and Drug Administration (KFDA) ~1%

      • Laos – Food and Drug Department

      • Malaysia – Ministry of Health (MOH)

      • Nepal – Department of Drug Administration

      • Philippines – Department of Health (DOH)

      • Singapore – Health Sciences Authority (HSA)

      • Sri Lanka – Ministry of Health (MOH)

      • Taiwan (Republic of China) – Taiwan Food and Drug Administration (TFDA)

      • Thailand – Food and Drug Administration of Thailand

      • Vietnam – Drug Administration of Vietnam

      • Algeria – Ministry of Health and Population • Botswana – Ministry of Health (MOH)
      • Burkina Faso – Le Ministère de la Santé

      • Ghana – Food and Drugs Authority

      • Kenya – Pharmacy and Poisons Board

      • Morocco – Ministry of Health

      • Nigeria – National Agency for Food and Drug Administration and Control

      • Rwanda – Ministry of Health

      • Senegal – Ministère de la Santé et de l’Action Sociale

      • South Africa – Medicines Control Council (MCC)

      • Swaziland – Ministry of Health

      • Tanzania – Tanzania Food and Drug Authority (TFDA)

      • Uganda – National Drug Authority

Read More
AD AD

The Meaning of Triage: A Guide for the Clinical Research Professional

Triage in Clinical Research

In the fast-paced world of clinical research, where breakthroughs hold the potential to transform healthcare, efficient processes are paramount. While it may not sound like a scene straight out of a medical drama, triage plays a vital role in ensuring the success of clinical trials. For anyone navigating this field, understanding the nuances of triage language is key to fostering fruitful discussions and seamless collaboration with fellow healthcare professionals.

But what exactly does "triage" mean in the context of clinical research? Let's break it down and equip you with the knowledge and confidence to master this crucial process.

Triage: Prioritizing Enrollment, Not Just Patients

In clinical research, triage mirrors its application in medicine – the meticulous sorting of individuals based on specific criteria. In a hospital setting, triage prioritizes patients with the most critical needs for immediate attention. Within clinical trials, however, triage goes beyond patient care and focuses on prioritizing enrollment. The objective is to identify and enroll participants who are most likely to benefit from the investigational treatment under study.

This meticulous selection process serves two key purposes:

  • Efficient Resource Allocation: By carefully selecting participants who best fit the trial criteria, resources are used effectively. This ensures the trial progresses smoothly without unnecessary delays or wasted resources. To further understand the roles involved in this process, you might consider exploring the Clinical Research Coordinator course.

  • Maximizing Trial Impact: Enrolling suitable participants increases the likelihood of the trial yielding meaningful results. This ultimately translates to maximizing the potential impact of the research on future patient care. For those looking to enhance their knowledge in ensuring trial safety and effectiveness, the Pharmacovigilance Certification can be a valuable resource.

Beyond Proficiency: Building Effective Collaboration

Understanding triage isn't just about mastering research jargon; it's about fostering effective collaboration. A strong grasp of triage principles allows you to communicate effectively with healthcare professionals involved in the trial, such as physicians, nurses, and research coordinators. This paves the way for seamless collaboration, ultimately leading to a more efficient and impactful research process. Those interested in advancing their roles in clinical trials might consider the CRA course or the Clinical Trials Assistant Training.

Empowering You to Navigate Triage Like a Pro

This blog post serves as your springboard to delve deeper into the intricacies of triage in clinical research. Future installments will explore the various methods used for triage, the factors considered during the selection process, and the impact of effective triage on the success of clinical trials. If you are looking to further enhance your understanding and skills, the ICH-GCP course is designed to prepare you thoroughly.

For those aiming for leadership roles in research project management or seeking specialized knowledge as a physician investigator, consider the Advanced Clinical Research Project Manager Certification or the Advanced Principal Investigator Physician Certification. For expertise in monitoring clinical trials, the Medical Monitor Certification provides comprehensive training.

Stay tuned to become a seasoned pro in navigating this critical aspect of clinical research!

References:

What are the steps of triage in clinical trials?

In clinical trials, the first step in triage is to determine who is eligible for the study. Eligibility criteria are set by the researchers and can vary depending on the study. Once eligibility is determined, the participants are randomly assigned to either the treatment group or the control group. The treatment group receives the experimental drug or treatment, while the control group receives a placebo or standard care.

The next step in triage is to assess the safety of the drug or treatment. This is done by monitoring the participants for any adverse effects. If any serious adverse effects are observed, the study is stopped and participants are offered appropriate medical care.

Finally, the efficacy of the drug or treatment is evaluated. This is done by measuring how well it performs compared to the placebo or standard care. If the drug or treatment appears to be safe and effective, it may be approved for use in patients.

Discuss how triage is used to prioritize patients in a clinical research study

In any clinical research study, there is a need to prioritize patients in order to ensure that resources are used efficiently and that the most important patients receive the attention they need. Triage is the process of sorting patients into groups based on their level of need. This allows researchers to focus on the patients who are most likely to benefit from the study and who are in the greatest danger.

There are a number of factors that can influence triage decisions. The severity of the patient's illness is one important factor, as is the availability of resources. The type of study being conducted can also play a role, as some studies are designed to enroll only the most severe cases. Another factor that can be considered is how much information is already known about the patient. For example, a patient who has already been treated for a particular condition may not be eligible for a study treating that condition.

The goal of triage is to ensure that patients are given the best possible chance of benefiting from clinical research. It is also important to remember that triage decisions are always made with the safety of the patient in mind. Patients who are deemed to be at high risk may be excluded from a study even if they would otherwise be eligible.

What are the benefits of triage in clinical research studies for researchers and patients

When it comes to managing and conducting clinical research studies, triage is an essential process that helps researchers to prioritize patients and determine the order of treatment. In a study with a large number of patients, triage can help to ensure that all patients receive the appropriate level of care. It can also help to ensure that treatments are administered in an orderly and efficient manner.

For patients, triage can provide a number of benefits. First and foremost, it can ensure that those who are most in need of care receive priority treatment. It can also help to minimize the amount of time spent waiting for treatment. Additionally, triage can help to ensure that patients receive the most appropriate level of care for their condition. This can be particularly important for patients with complex or multiple conditions.

Overall, triage is an essential process that helps researchers to manage clinical studies more effectively and efficiently. It also helps to ensure that patients receive the highest level of care possible.

Tips for conducting clinical research study triage effectively in pharmacovigilance

Clinical research study triage is an important part of pharmacovigilance. Triage is the process of sorting and prioritizing patients based on their severity of illness. This allows healthcare providers to focus on the most serious cases first.

In pharmacovigilance, triage is used to prioritize potential adverse drug events (ADEs). ADEs can range from mild to life-threatening. Triage allows healthcare providers to focus on the most serious cases first. This helps to ensure that patients are given the appropriate level of care and that potential risks are mitigated as quickly as possible.

There are several factors that are considered when triaging patients in pharmacovigilance. The severity of the ADE is one factor that is considered. The likelihood of the ADE causing serious harm is also taken into account. The number of people affected by the ADE is also considered. Finally, the potential for the ADE to be prevented is also taken into account.

Triage is an important part of pharmacovigilance. It helps to ensure that patients receive the appropriate level of care and that potential risks are mitigated as quickly as possible.

Triage is an essential step in any clinical research study. By understanding the purpose and process of triage, healthcare professionals can more effectively enroll patients in studies that are right for them. Triage also offers benefits for both healthcare professionals and patients by allowing researchers to prioritize those who will receive the most benefit from participating in a study. When conducted effectively, triage can help improve patient outcomes and advance medical knowledge. Want to learn more about how to conduct clinical research? Enroll in our certification program today!

Read More